skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, B P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. River capture events may create short‐term pulses of incision in orogenic settings, complicating the interpretation of tectonic and climatic influences on exhumation patterns. The Sutlej River in northwestern India offers a compelling case study, as recent exhumation has been linked primarily to tectonic and climatic factors, whereas the capture of the Zhada Basin has been identified at <1 Ma. This region also features active faults and a river anticline formed by rapid river incision. The integration of new (U‐Th)/He data, inverse modeling and a geomorphic analysis has revealed two recent episodes of rapid exhumation along the river anticline: (a) a 0.8–0.3 Ma pulse coinciding with the capture of the Zhada Basin, which is associated with a 2‐ to 3‐fold increase in exhumation rates in the river anticline region, and (b) a 2–1 Ma pulse linked to the potential capture of the Pare Chu River, another major tributary of the Sutlej River. Our findings suggest that these Pleistocene river capture events both led to increased exhumation downstream along the river anticline, a region susceptible to rapid exhumation via ongoing deformation and a warm weak crust. Thus, this study emphasizes how erosional perturbations, triggered by changes in drainage systems, can significantly impact topography, local exhumation patterns, and deformation dynamics during <1 Myr time periods. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026